Confidence Sets for Network Structure
نویسندگان
چکیده
Latent variable models are frequently used to identify structure in dichotomous network data, in part because they give rise to a Bernoulli product likelihood that is both well understood and consistent with the notion of exchangeable random graphs. In this article we propose conservative confidence sets that hold with respect to these underlying Bernoulli parameters as a function of any given partition of network nodes, enabling us to assess estimates of residual network structure, that is, structure that cannot be explained by known covariates and thus cannot be easily verified by manual inspection. We demonstrate the proposed methodology by analyzing student friendship networks from the National Longitudinal Survey of Adolescent Health that include race, gender, and school year as covariates. We employ a stochastic expectation-maximization algorithm to fit a logistic regression model that includes these explanatory variables as well as a latent stochastic blockmodel component and additional node-specific effects. Although maximumlikelihood estimates do not appear consistent in this context, we are able to evaluate confidence sets as a function of different blockmodel partitions, which enables us to qualitatively assess the significance of estimated residual network structure relative to a baseline, which models covariates but lacks block structure.
منابع مشابه
QSAR studying of oxidation behavior of Benzoxazines as an important pharmaceutical property
In this work the electrooxidation half-wave potentials of some Benzoxazines were predicted from their structural molecular descriptors by using quantitative structure-property relationship (QSAR) approaches. The dataset consist the half-wave potential of 40 benzoxazine derivatives which were obtained by DC-polarography. Descriptors which were selected by stepwise multiple selection procedure ar...
متن کاملRelative Efficiency Measurement of Banks Using Network DEA Model in Uncertainty Situation
Traditional DEA method considered decision making units (DMUs) as a black box, regardless of their internal structure and appraisal performance with respect to the final inputs and outputs of the units. However, in many real systems we have internal structure. For this reason, network DEA models have been developed. Parallel network DEA models are a special variation which inputs of unit alloca...
متن کاملQSAR studying of oxidation behavior of Benzoxazines as an important pharmaceutical property
In this work the electrooxidation half-wave potentials of some Benzoxazines were predicted from their structural molecular descriptors by using quantitative structure-property relationship (QSAR) approaches. The dataset consist the half-wave potential of 40 benzoxazine derivatives which were obtained by DC-polarography. Descriptors which were selected by stepwise multiple selection procedure ar...
متن کاملمدلسازی خطی برای تعیین مجموعه وزنهای مشترک در ساختار شبکه ای
In traditional DEA models, one faces the challenge of zero and unequal weights for evaluating each decision-making unit (DMU). On the other hand, for measuring the efficiency in these models, the system is considered as a black box, disregarding its internal processes. One of the strategies applied to deal with this problem is to use common weights of each input/output in all DMUs. In practice,...
متن کاملSolubility Prediction of Drugs in Supercritical Carbon Dioxide Using Artificial Neural Network
The descriptors computed by HyperChem® software were employed to represent the solubility of 40 drug molecules in supercritical carbon dioxide using an artificial neural network with the architecture of 15-4-1. The accuracy of the proposed method was evaluated by computing average of absolute error (AE) of calculated and experimental logarithm of solubilities. The AE (±SD) of data sets was 0.4 ...
متن کامل